Effect of three agroecological feeding strategies on the yield and composition of crossbred cows’ milk in the Mexican tropics

Sarabia S, L; Briceño, E; Ayala B, A; Aguilar P, C; Fiebrig I; Burbi, S; Solorio S, FJ
1.- Importance of livestock milk production
OUTLINE

1.- Importance of livestock milk production

2.- Challenges related to livestock milk production under tropical conditions
OUTLINE

1.- Importance of livestock milk production
2.- Challenges related to livestock milk production under tropical conditions
3.- The Study
What can livestock do for development?

Livestock contributes to development in many ways:

• as an economic activity,
• as food production, and
• as a provider of environmental services.
Importance of livestock:

• 3 billion people live in rural areas, nearly half world population.

• It generates on average 29 % GDP.

• Employment for over 1.3 billion people.

• Important for food security & source of income for the majority of the rural people.
In Mexico:

- Keeping livestock is practiced on about 100 million of ha (55% of the Mexican territory).
- Grassland: about 30 million ha.
- However, due to agricultural production México looses 510,000 ha of tropical forest annually.
Challenges

- forage shortages...
- rainfall is a limiting factor for pasture development, due to the unequal distribution throughout the year: the **dry season** can last for **almost seven months**.
- Tropical pastures (lack of N) do not provide sufficient protein to cover the maintenance and production needs of cows...
- very **low milk production**.
Farmers import great amount of grains (soya, sorghum and maize) / concentrated feed
Alternative:
Adding different forages of improved nutritional quality, including nitrogen fixing species in silvo-pastoral systems.
The present work aims at studying the effect of three feeding systems on milk production.

(1) Intensive silvopastoral system (iSPS) comprising *Leucaena leucocephala* associated with *Panicum maximum* (Guinea grass, buffalograss; Poaceae)
The present work aims at studying the effect of three feeding systems on milk production.

(1) Intensive silvopastoral system (iSPS) comprising *L. leucocephala* associated with *P. maximum*

(2) Native vegetation (NV) including the highest diversity in trees and shrubs forage species, and
The present work aims at studying the effect of three feeding systems on milk production.

(1) Intensive silvopastoral system (iSPS) comprising *L. leucocephala* associated with *P. maximum*.

(2) Native vegetation (NV) including the highest diversity in trees and shrubs forage species, and

(3) Confined system (CS) with controlled feeding consisting of chopped grass *Pennisetum purpureum, ad libitum.*

Taiwan grass, elephant grass; Poaceae
Kampepem farm, located near San José Tzal. Tropical weather
L. leucocephala / P. maximum
Diversity in trees and shrubs forage species
Chopped Taiwan grass (*P. purpureum*, *ad libitum*).
n = 15; *Cebú x Holstein:* 487 ± 22 kg at their third calving and within the first lactation period

- Each treatment lasted 21 days:
 - (1) iSPS (20 hrs/d)
 - (2) NV (20 hrs/d)
 - (3) CS

- Milk sampling every 7 days
Each animal was supplemented with:

- 3 kg of fresh, chopped *B. alicastrum* leaves

Brosimum alicastrum
Ramón, bread nut tree
Maya nut tree
14-16 % CP
Moraceae
Each animal was supplemented with:

- 3 kg of fresh, chopped *B. alicastrum*

and

- 1 kg of a 2:2:1 mixture of
 - *E. cyclocarpum* ground fruits (400g),
 - ground corn (400g) and
 - wheat bran (200g).
Manual milking conducted once a day: 8.00-9.00 am
Chemical composition

- Analysed using a Lactoscan milk analyser;
- Covariance analysis was conducted (proc PRINT GLM); for differences the Tukey test was applied ($P < 0.05$).
Results

- There were no statistically significant differences in the chemical composition of milk ($P < 0.05$); however, total fat contents confirm a product of high quality with values between 45 and 50 g/kg in all cases.

- **Milk yield** and **lactation energy intake** were **highest in iSPS and NV** (6.3 & 6.4 kg/cow/d; 14.9 & 15.9 MJ/cow/d, respectively).

Table 1: Milk yield (kg/d) and composition under three different feeding strategies.

<table>
<thead>
<tr>
<th>Variable</th>
<th>iSPS</th>
<th>NV</th>
<th>CS</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield (kg/d)</td>
<td>4.69a</td>
<td>4.80a</td>
<td>3.50b</td>
<td>0.0001</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>31.16a</td>
<td>30.98a</td>
<td>30.64a</td>
<td>0.4361</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>45.04a</td>
<td>47.87a</td>
<td>50.07a</td>
<td>0.0855</td>
</tr>
<tr>
<td>Lactose (%)</td>
<td>45.21a</td>
<td>46.24a</td>
<td>45.75a</td>
<td>0.5759</td>
</tr>
<tr>
<td>Solids (%)</td>
<td>6.74a</td>
<td>6.84a</td>
<td>6.81a</td>
<td>0.7742</td>
</tr>
<tr>
<td>Net Energy Lactation (MJ/d)</td>
<td>14.98a</td>
<td>15.86a</td>
<td>11.76b</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Discussion

- The higher values in iSPS and NV (as opposed to CS) suggest that animals are consuming a higher ratio of more digestible vegetation in ecosystems where they can develop a more natural nutrient selectiveness.
Conclusion

- *L. leucocephala* in iSPS is a **viable alternative in dual purpose production systems**, as can a substitution of proteins, thus reducing costs of production and maintenance during the seasonally critical dry periods.
Ceiba pentandra tree

Thank you!

Acknowledgements: