Dehesa habitats and dehesa landscapes. Disentangling components of vascular plant species diversity.

José M. García del Barrio¹ y², David Sánchez de Ron¹, Sonia Roig³

1 INIA-CIFOR (Madrid)
2 IuFOR (UVA-INIA)
3 UPM (Madrid)
Dehesa habitat
Dehesa landscape

Dense dehesa

Pastures

Olive grove

Shrub land

Forest

Rural path

Aims

• Evaluate the biological diversity of vascular plants at different scales, from dehesa habitat to dehesa landscape.

• Determine how each land use contribute to diversity at municipality scale.

• Compare the diversity of four municipalities in relation with climatic type and agro-pastoral uses.
Study sites

- Four municipalities in western Spain where dehesas are the main land use.
- Covering the entire climatic range where dehesas are actually located.
Methods

• Vegetation quantitative sampling
• Calculation of Hill’s numbers (H: 0,\(\rightarrow\)1, 2) for estimation of \(\alpha, \gamma\) and \(\beta\) diversity (municipalities and land uses).
• Performing diversity profiles (municipalities and land uses).
• Comparison of diversity at dehesa habitat and dehesa landscape scales.
Sampling procedure

- Plots were randomly selected after a previous stratification by main land uses of each municipality performed on the basis of the Spanish Forest Map (MFE50).
- Quantitative sampling of herbaceous, shrub and tree species in each plot of 20 x 50 m².
- All the plots in each municipality were sampled only once in the spring, at the time of peak flowering.
- The determination of species was conducted following Iberian Flora updates and Anthos (www.Anthos.es).
Whittaker multi-scale plot modified

20x 50 m²
Area 1000 m²

5 x 20 m²
Area 100 m²

2 x 5 m²
Area 10 m²

0.5 x 2 m²
Area 1 m²

World Congress Silvo-pastoral Systems 2016
Évora (Portugal) September 27-30
Diversity indices and diversity profiles

Calculated diversity indices were Hill numbers or effective number of species (qD) for ($q= 0, \rightarrow 1$ y 2), following the formula:

$$qD = \left(\sum_{i=1}^{S} p_i^q\right)^{1/(1-q)}$$

- 0H species richness, list of species
- 1H exponential Shannon index, common species.
- 2H inverse of Simpson concentration, abundant species.
Results municipalities

Barcarrota
Oropesa
Zorita
Aldehuela

ALPHA

GAMMA

BETA

World Congress Silvo-pastoral Systems 2016
Évora (Portugal) September 27-30
Results municipalities

• The four municipalities harbor 564 species, 136 of which are common species and 51 abundant species.

• Gamma accumulated reflected a gradient with Oropesa at the top and Zorita at the bottom for species richness (287 versus 248), common species (90.37 versus 58.16) and abundant species (46.12 versus 26.76).

• Climatic gradient is not apparently significant for diversity because Oropesa and Zorita, the most distant in gamma values, belong to the same climatic type II.
Results main land uses

ALPHA

GAMMA

BETA

Rarefaction 8 samples

World Congress Silvo-pastoral Systems 2016
Évora (Portugal) September 27-30
Results main land uses

Rarefaction at 12 samples

More than 90% of species found
Results unique species by land uses

- Dehesa habitat includes 58% of species found in landscapes with 8% of unique species. Similarly forest habitat includes 55% of landscape species with 6% of unique species.
- Linear elements like water courses and rural paths harbors 70% of species with a unique species proportion of 18%.
- Rest of land uses like scrublands and pastures harbors similar proportion of species (55%) than dehesa habitat and forest with the same rate of unique species (6%).
Conclusions

- Dehesa landscapes are agro-silvo-pastoral systems with four main vegetation habitats; dehesas, forests, different types of linear features and other lands uses (pastures, meadows and scrublands mainly).
- Local species richness (α) elsewhere is high (77.1 ± 4.2) with only less local values in marginal areas of other land uses (56.4 ± 3.7).
- Diversity of dehesa habitat decrease from local to regional scale showing the lowest β values of all land uses or, in other words, dehesas are very similar in composition along its distribution area regardless of the climate or the substrate.
- Low levels of human intervention and the heterogeneity of land uses enhance the existence of a network of edge areas and linear features where are located seven out of ten of the species of vascular plants that we can find in these sylvo-pastoral landscapes, being at least 25% of them so common to be able to recolonize other adjacent land uses.
- Proyecto SC00-042. Evaluación Territorial de la Sostenibilidad Agroambiental en la Planificación Rural: Estudios Piloto de Sistemas Agrosilvopastorales Españoles.
- AGL2005-06648-C02-02. La planificación del paisaje en los Planes de Ordenación de Recursos Forestales (PORFs) con el mantenimiento o mejora de la biodiversidad como objetivo. BIOFORLAN
- SUM2006-00034-C02. El sistema agroforestal dehesa como sumidero de carbono: hacia un modelo conjunto de la vegetación y el suelo.
Some publications

Thank you

World Congress Silvo-pastoral Systems 2016
Évora (Portugal) September 27-30